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Chapter 1

Introduction

In this thesis we study the significance levels and powers of repeated significance test

(RST). A RST is the sequential version of the generalized likelihood ratio test. To be more

precise, let us consider the following testing problems Let X 1 ,X 2 ,. be i.i.d. according to

the distribution function Fs where {F#} form a multiparameter exponential family. By that

we mean F* has the form Ft(dz) = c'O-O(*)Fo(dz) for some smooth function 0(.) from the

parameter space E into R and some distribution function F0 over R". It is well known that

E X 1 = #(P) = Vb(O). Moreover, there is no loss of generality to assume that pU(O) = 0.

Sometimes it is convenient to index this family by p and write F.. Let O0 be a proper subset

of 0 C Rd. If we want to test Ho 0 E 80 against H, : 0 f 0o. The generalized log likelihood

ratio statistic after observing X 1, X 2, X. for this testing problem is

nA(S,/n) = sup 4,(0) - sup .(P) = nO(S/n) - nso(S/n)
04EO 0680

where t4(O) = PS. - no($) is the log likelihood after observing X1, X., S = X

and

O(z) = suprz - (O)J, 0o(Z) = sup ['VZ - o(e)].
tee Oee-0

The RST is defined in terms of the following stopping rule

T = inf(n >, mo, nA(S./n) > a).

It stops sampling at T A m and rejects H0 when T < m. The significance level and power of

the RST are given by

maxP*{T m )



2 Chapter 1: Introduction

and P#{T < m} 0 f 1o where P# denotes the probability law under which X 1, X2,... are i.i.d.

according to the distribution function Fe. In some cases when one expects a small deviation

from the null hypothesis and wants to increase the power, one may use a modified version of

the RST. The MRST rejects H0 when either T < m or T > m and mA(S,/m) > e for some

c<a.

Observe that when we fix c and let a tend to co then it is unlikely that the log likelihood

ratio process nA(Sn/n) will cross the level a before time m and the rejection region of the

cor-esponding MRST reduces essentially to {mA(S,3/m) > c} which is exactly the rejection

region of a fixed sample test. On the other hand if we set a = c then the corresponding

MRST is just RST. So the MRST can be thought of as a family of tests interpolating the

fixed sample size test and the RST.

Underlying this interpolation, there is a trade-off between expected sample size and

power, that is, as a moves from c to co the power of MRST increases to that of a fixed sample

test at the cost of increasing the expected sample size. So with MRST at hand the designer

of an experiment has one more degree of freedom to choose in fulfilling his needs. If he thinks

power is more important he may choose a MRST with a substantially larger than c. If smaller

expected sample size is desired he may choose a close to c.

The power of the MRST is given by

P#{T < m } + P{ T> m, mA(S,/m) > 4)
(1)

= PsmA(S./rn) > c} + P*{T < m, mA(S./m) < 4)

The quantity (1) also appears on other occasions. Siegmund (1985) suggests defining the

attained significance levels for a RST as follows:

(i) If T = mo and moA(Smo/mo) = z > a then the attained level is supe o Pe{moA(Sao/mo)

>z}.

P (ii) If T = n 6 (io, ta] the attained level is supe P{T < n}.
S:

...................... .



Section 1.1: Forward Method 3

(iii) If T > m and mA(Sm/m) - c then the attained level is

sup[P{T :_ m} + P,{T > m, ,mA(S./m) > ]

= sup[PelmA(S./m) > c} + Pe{T < m, mA(S.Im/) c }].
eo

In case (iii) above the attained significance level is of the same form as (1). r

In this thesis we only consider a special kind of 9o, e.g.

eo = ${:I = ... = 4 =O} d 1 <5d

By reparametrization E0 can be generalized to IO = {A$: 0 E e} where A is a d x d matrix.

Typically the significance level and power of the RST and MRST cannot be computed exactly

and some sort of approxiiaation is required. Approximations for significance levels of the

RST in exponential families have been provided by Woodroofe (1978) and Lalley (1983).

Their setting is more general than that above, but their methods are not as successful in

approximating the power of the RST and to power and significance level of the MRST. In

what follows we shall exhibit with a simple example three methods which have been developed

by previous authors. Let X 1,X 2,'" be i.i.d. according to N(,1). We want to test 9= 0

against 9 # 0. The RST in this case is defined by the stopping rule

T =inf(n -emo, S./(2n) > a.

1.1. Forward Method.

The essential ingredients of this method are the likelihood ratio of a mixture measure

Q and the probability measure Po under the null hypothesis, and the Wald likelihood ratio

identity. Let Q(A) = P(A)d$ then

(8, = [ exp(oS. - nP/2n)dO= (2r/n)I/2 .
dPo

Here the notation j (Y) means that # and v are considered to be measures on the a-field

generated by Y, and (Y) is the Radon-Nikodym derivative of the restricted measures.

I ,



4 Chapter 1: Introduction

By Wald's likelihood ratio identity

Po{T _ - = EQ{(T/2r)1/ 2e -S/2T; T:5 m)

=f E,{(T/2r)j/ exp[-(a + R.(T))]; T < )}dO

=(a/I)'/2 e- e 1{(T/2a)1/2C-R-(T);T < .- d

where R,.(T) (SI2 /2T - a) is the corresponding excess over the boundary for this problem.

Before we go any further, let me introduce some notation. Throughout this work I use

R(T) to denote the excess over the boundary corresponding to the stopping time T. Usually

the stopping time depends on a scale parameter m. To emphasize the dependence on rw I

also write RI.(T) or R. if it does not cause confusion, and P o(T) or R, the corresponding

limit in distribution as m -. co.

If a, m, m0 tend to oo in such a way that (2a/m)1/ 2 
- D, < Oo = (2a/mo)1/2 then an

argument using the strong law of large numbers shows that with Pe-probability one

(T/2a)'1/21(,,o<T5m) -- 0-1

and

PoT _< m} m.- (a/r)1/'-" 10 o-LE,{C-r9O(T)}dP

Now Bo(e - ,R- (T)) can be approximated using nonlinear renewal theory developed by Lai

and Siegmund (1977, 1979) or Woodroofe (1976a) and the approximation is completed.

This method has been generalized to RSTs for curved exponential families by Lalley

(1983).

1.2. The Backward Method.

The backward method which is due to Siegmund (1985) sets its primary goal on approx-

imating the conditional probability P(-l(A) = P{A I Sm }, which by sufficiency of S., is

independent of 8. Then the power and significance level may be obtained by unconditioning

with respect to the distribution of S.. In Chapter 3,4 we shall generalize this method to

multiparameter exponential families.

.. %

p-- - 4~%V * ~. ~ %..



Section 1.2: The Backward Method 5

The essence of this method involves randomizing the starting point of a process, then

treating it like a process running backward from the point of conditioning. Let P(')(A) =

P(A I So = A, Sm = . ) and T* = sup {n 5 m, S,2/2n > a}. Observe that RP{m)(T < m) =

P(- lT 
> mo ). Let

fPlm)(A) _ J PI)(A)(2rm)1/2 exp{-[(A - e.)/2m1}dA

Then

dP(rn) In1 2 n 2 m2

Olt
Since under the reversed time scale T' is a stopping time, Wald's likelihood ratio identity

gives

1/2 2 S.- =-;) exp ( -2T.j' T *>mo1 .

The P=l) distribution of Sn,, n = m, m - 1,.-. running backward from Sm= is the same as

the P distribution of C - S,, n = 0, 1,.-. ninng forward.

Hence the expectation above equals

o{( 2- )exp 2m 2 m-) ; r m - M

where r = inf{n > 1, (f + S.)2/[2(m - n)] > a). Assume that 01 (2a/m)1/2 and

C0 = m - C. A law of large numbers argument shows that r/m - 1_- (Co/8i)2 with probability

one as m - oo. The quantity above is approximated by

(m~i /f) exp(-a + C2/2m)Eo{e - R (r)}

where

((Sr C)2/[2(m r)]} -

is the excess over the boundary at the stopping time r. Again nonlinear renewal theory can

be used to obtain the asympto'tic distribution of R(r) and the approximation for P("I(T <

m) is compleLed. Unconditioning C using the marginal distribution of S, under Po yields

Po (T < m).
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We may uncondition. using Pe with 0 4 0 and obtain an approximation to the powers.

Unfortunately the result is not a bona fide asymptotic expression, although the numerical

results show that it is a very good approximation. See Siegmund (1985) Section 9.3 for

details.

1.3. Woodroofe's Method.

This method, which was developed by Woodroofe, is quite different from the two meth-

ods described above. It does not use Wald's likelihood ratio identity. The method fi:st

approximates Po{T = n) then estimates Po{T < m) by summation. Observe that Po{T =

m} . 2P{T+ = n) where T+ = inf{n _> mo, S. > 2"n

= n} J0 Pf"}(T+ > n - 1)(2 rn)- 112 • exp(- 2 /2n)df.

It is easy to see that the only values of C which are of first order importance are 2Vi2a+0(1).

In this range we can approximate the curve v by its tangent and the conditional random

walk by an unconditional one (with drift fo). That is, let 2 = + y where y is arbitrary

but fixed.

I,(n)T+ > n - 1} = P0{.9, < '/a for all mo : k _< n - I I Sn = 2/an + y)

= POP.n - Sk > Y/+ vf/ a(n 112 -k1/2) for all mo) _< k < n I S, = 2 a + y)

Po{S > y + vr/2i(n'/2 - (n - i)1/ 2) for all 1 < i < n - in0  = p + o(1)}.
n

Observe that Vrf[n1/ 2 - (n - i)1/ 21 = VF2n-1/2i + 0(Vr n-1/2n-3/2i 2 ) - 1pi if n and

a tend to infinity in such a way that (2a/n)1/2 -. . The conditional probability above is

asymptotically equivalent to

P.{S > Y + 2 pi for all i > 1}= P.1 2{S > y for all i> 1}

To continue we need

Lenuna 1. (Woodroofe, 1982, p. .) Assume p = EXI > 0. Let M = min(S, S2 ,...).

Then for z > 0

[g('r+)]-'P{S,+ > z} -- j-P{M > z) where r+ = inf{n _ 1, S, > 0)

. ," .- . '. . .' .- .. .- . . o , ..- .
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Proof: Define a = sup{n : S,, = M} and r- = inf{n > 1, S, < 0). Consider the probability

P{a = n, M > z. By restarting the random walk at time n, we find that

P{c =n, M > z} = P{r. = o}. P{S. !5 S, = 1,", - 1 S >}.

A time reversal argument shows that

V{$, <5 Si i= 1, -..n- 1, S,, > x) = P{Sj < 0, i = 1,...n- I S. > z

= P{r+ = n, S,+ > z}.

Combi. ing all the results above, we get

P{M > z} P{a = n'f > z} E P{r- = oo}P{Sn < Sii= 1,...,n- 1,Sn >z}
n=L

= P(r = oo) E1P{r+ =n,S, > z = (E+)-'P{S,. > z) = p(ESr,)-'P{S. > z
n=1

We have used the duality relation P{r_ = oo} = (Er+)- 1 and Wald's identity ES.+ = pEr+

in the fourth and fifth equality above. The proof is completed.

By lemma 1 and the argument given above

P0 {T = n} 2Po{T+ = n}

2f I[Ep.1 2(S+)]-P. 1 2 {S+ > z}(22rn) -
.exp{-[(2an)1/2 + l2 1.'2n}dy

~ .- l(a/;r) e-. [E,./12s,+)] -12l + > T}, 'e v

The integral above e,, als lim 0 ,. E,. exp[-R(T)] by nonlinear renewal theory, where R.(T)

=S2/2T - a. Summing over n and approximating the sum by an integral yields the desired

result. Now. we are in a position to make brief comments on the three methods described

above.

If one were only concerned with the significance levels of the RST then the forward

method is the most general of the three. If one wants a second order approximation to the

significance level then Woodroofe's method seems to be the appropriate method to use. Since

the Monte Carlo results in Chapter 5 show that the 'obvious" second order correction works

quite well, the complicated second order correction developed by Takahashi and Woodroofe
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(1981, 1982) seems to be unnecessary (at least in those cases). But if we restrict our attention

to the linear hypothesis, then the backward method produces the most fruitful results, that

is, it can be used to approximate the significance level, power, and p-values of the RST and

MRST. One of the major contributions of this thesis is to generalize the backward method to

multiparameter exponential families.

The rest of the thesis is organized as follows. In Chapter 2 the simple null hypothesis

case is considered and a theorem which relates the excess over the boundary by the forward

and backward process is proved. Chapter 3 deals with the composite hypothesis problem.

The results there indicate the necessity for studying the conditional renewal theory which

is the topic of Chapter 4. An application to the "change point" problem is also given.

Chapter 5 contains a careful treatment of an important example: the repeated t-test. The

numerical approximations of powers and significance levels of RST and MRST and the results

of corresponding Monte Carlo experiments are also reported. Finally, the Appendix gives some

details of the numerical computation performed in Chapter 5.

:::i .......... :............:.......:.....................:::.::::::::.



Chapter 2

The Simple Null Hypothesis Case

When Oo contains only one point the backward method generalizes to the multiparam-

eter exponential family easily. Without loss of generality we assume 00 = {0}. In this case

the stopping rule is T = inf {n 2! mo, n (-) > a}. DefineT = sup {n < m, ro(') > a}

then P{T < m} = P{T 2 mo}. Now

A-) (Sn,.,Sn,)= . ,(Sn - A)fM(O)

dP(m) fn(Sn)fm(f - A)

where f,,(.) is the density of S, under FO, we assume f, exist and satisfy the condition given

in Proposition 1 below.

P()(A) = Po(A ISo = A, S =.

Also define (4(A) = f PA()(.4)f,(C - A)dA. The likelihood ratio of Q with respect to p(i) is

easily calculated as

Ln =- f (Sn, ,Sm)f.( -A)dA\
M- dP(-) A (S.)1,S

The Q distribution of S., n = m, m - 1,... running backward from Sm = in0o is the same as

the Po distribution of meo - Sn, n = 0, 1,... running forward. Under the reverse time scale

T* is a stopping time so the Wald likelihood ratio identity gives

Z.

Let r = inf(n _ 1, (m-n)oS ((ZS,) > a}. Note that under Q m- r has the same distribution

-. * ' . ". *. ' . . - . - - .:. - - - : :" :.- -- . . - -: :,



10 Chapter 2: The Simple Null Hy'potheeis Caje

as T under Po so the expectation above equals

Eo{ !m (e SOr 5 rm -mo}
A.m(0

It is not hard to see that if

teo =inf tt; ao) (2.1)

exist and 0 < to < 1 - !~then r/m, - tq0 with probability one, where a =mao, =m~ 0 ,

and the expectation above is approximated by

Eo {fm-'(' Sr)}

To continue the computation we need

Proposition 31. If for some integer no, for some n no Sn, has a bounded continuous density

f with respect to Lebesque measure on Rj, then as n -~ oo

where T(X) -V 2 1p((X)), the covariance matrix of X, under P()

Proof: See Borovkov and Rogozin (1965).

By Proposition 1

f.(1) -~ (2 rm)-d/ IT ( O) I1/2em-(o)

so

(f-(S') I_ E1' (M_\d2 IT()I I ( S,\ 1-1/2
E Eo ~ ) 1/2 .

exp [mOo) - (m - r)4 O -~)

=(1 _ tfo)d/,21T( o)1.IT -1/2 ex([-m~O) - O(eo))] Eole-Rn(t)}

where Rm.(r) =(m - r)~ a is the excess over the boundary at stopping time r. Lct

Kf (t, x) (I (- t)o ~-) Theorem 2 of Chapter 3 of Hogan (1984) asserts that as m -o 0
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Observe that
v012((2))= V[C,(2), 82)  0 (2)(8(2-))] -.

6 6(2) + ((2) - f(02))

- (2)

where J(G )-- 2)) is the Jacobian matrix of the mapping (2). So

(m - n)€(2)[(( 2 ) - S.())/m - n] = (m, - n)€2)(,I)) + (nf2) - S.°2))o + o(1) a.s.
- m(2)(,( 2 )1 

- n[2)0o,)- (2)(8(2))] + o(1) a.s..

Substituting the equation above into (4.1) completes the proof.

Before we investigate the nonlinear boundary crossing problem let us consider the linear

problem first. Suppose we want to find the excess over the hyperplane X = {z : -1 z = c} by

the d-dimensional random walk. Sn in the norm direction -y, where -1 is a d-dimensional vector

satisfying E(-- SI) = yIL > 0.

The problem above can be converted into a one-dimensional problem. In fact the first

time S,, crosses ) is the same as the first time the one-dimensional random walk -y " S, crosses

the constant level c. Moreover the excess in the normal direction by S, is exactly (-I ST. - c)

where T, = inf{n, -" S. > e}.

The next theorem relates the excess over the linear boundary of a conditional random

walk to that of an independent random walk.

Theorem 2.

lim P(,){- ST, - e ) = Z ()P0 0){' T. - c_ :}.

Moreover the equality above still holds when c is allowed to depend on m in such a way that

0(m1/2-
*) = c --* oo where a is any positive number less than 1/2.

Proof. Clearly P()TC < M(1a )/2} -. 1 as m - o. So for any given c > 0 we can find m,

such that Vm > m, the inequality below holds:

IP(I) {_, ST, - ! 5 z; T, < m(al - )/2 } - p(') -- C ~l < f-



Chapter 4

Nonlinear Renewal Theory for Conditional Random
Walks

Here we study the asymptotic distribution of excess over the boundary by a conditional

random walk. The notation used here is consistent with that of Chapters 1, 2, and 3, except

where stated otherwise. We begin with the following lemma which shows that as the time

of conditioning becomes remote a conditional random -walk behaves like an independent one

locally. Let f . (2) m-, #(2)(z) _ supe()=o[Gz _ 0t(a)], 0 2')(e) 0 [(0,0(2)]. For the

sake of simplicity write 02) for p(2)( 2)).

Lemma 1. If n = o(mI/2) then

SpC(2)M)

lim C,, )(S, s. -S,, ) a.s. P,
m-oo dP 0 0c))

Proof:

dP()
E2( S.S) =[f(Sj) .f(S2 _ S1). .f(S. S._.) ~2((2)_ -()/() 2

" [f(,,()c(S ) - f(o,,(,,)(S2 - SI) ... f(O,#o2,,)(S. - .n-l)]-'

=-f, (2) _ S(2)). [f2)(f(2)). exp{S(,2) • 8( ) - n (2)(8(1) ) 1-1.

By Proposition 1 of Chapter 2 the quantity above tends to
[,m/(m- ,)d2/2j(2)(, 2 ))j1/2j(2)[(,(2) - s1/))l(, -

* exp{-(m - n)O{ 2)S(, (2) _ 5(2})/(m - n)] (4.1)

* exp[MO(2)(4 2))] - exp{- S( 2 ). 002) + nO (2)($.( ) )}.

Now

- Sn,))/(m - -, = )))+ [(<2) - S(.))/(m - n)]. V#(2)(4 2 )) + o(m-') a.s.
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Observe that

v(2)( (2) ) = v[&() #(•2) -0(2)(0..)j

= g(2) + (C.(2) - V'()( )), 0 (21 ) (. (2 ) )

= 0(2)
0

where J(0(2) -. C(2)) is the Jacobian matrix of the mapping 00( ) --. 4(). So

(M _ )0(-)[( (2) S 2(2))/m - nj = (m - n)0(2)((2)) + (<,2) - S(2))O.(2) + o(1) a.s.

= mo(2)( C.2)) - n[ 2 e0 2 1 _ 0(2)(0(2))] + o(1) a.s..

Substituting the equation above into (4.1) completes the proof.

Before we investigate the nonlinear boundary crossing problem let us consider the linear

problem first. Suppose we want to find the excess over the hyperplane X = {z : -Y. z = 4} by

the d-dimensional random walk S. in the norm direction -1, where I is a d-dimensional vector

satisfying E('. 8,) = -y p> 0.

The problem above can be converted into a one-dimensional problem. In fact the first

time 5. crosses X is the same as the first time the one-dimensional random walk '" S,, crosses

the constant level c. Moreover the excess in the normal direction by S. is exactly (Y " ST, - c)

where T, = inf{n, S. > 4).

The next theorem relates the excess over the linear boundary of a conditional random

walk to that of an independent random walk.

Theorem 2.

lim P"O')' .,o ST. - C <_ Z} = P o 0(2){ - ST, - C <Z ,}.

Moreover the equality above still holds when c is allowed to depend on m in such a way that

O(Mi/2-) = e -. oo where a is any positive number less than 1/2.

Proof: Clearly P(){T, < M(I-)/2} _- 1 as M -. oo. So for any given c > 0 we can find m,

such that Ym > m, the inequality below holds:

IP-{. S, - &; / 2 )('- )/} - p('){7 S 1 <



Chapter 4

Nonlinear Renewal Theory for Conditional Random
Walks

Here we study the asymptotic distribution of excess over the boundary by a conditional

random walk. The notation used here is consistent with that of Chapters 1, 2, and 3, except

where stated otherwise. We begin with the following lemma which shows that as the time

of conditioning becomes remote a conditional random walk behaves like an independent one

locally. Let 4o(2) = f(2) . m- 1 , 0(2)(z) _ supo()=o [$,z - O(p)], 0(2)(f) = 0[(0, $(2)]. For the

sake of simplicity write 802) for $(2)(42)).

Lemma 1. If n = o(ml/2 ) then

!P(m)
-im eo, , (,,..., Ss) = 10,0a)

Proof:

dP(m)
C 2  (S1, ., Sn)= [f(S1 ).f(S2 _-S1) ... f(S._-S._ 1 )f,!(2)(e2_S(2) ()f2)

S[f(oe,(2))(SI) f 0o o,,)(S 2 - S,) ... f(0 ,0,)(Sn - s.-l)l-'
- f( 2 ~~(f (2) - Sn)) . If(. 2) (f exp{$( 2 , e(2) - n(2)(G0( ))}j-1.

By Proposition I of Chapter 2 the quantity above tends to

[ m/(m - n)1j,/ 2 j1T2 )(f(2))j1/ 2 1( 2 )[(( 2 ) - Sn())/(m - n)]1-1/2

* exp{-(m - n)0(2)[(f(2) - Sn(2))/(m - n)] (4.1)

* cxp[mO(2) (4(2 ))] • exp{- S(2) • 80() + n#(2)(0(2))).

Now

0(2)[(C(2) - Sn2))/(m - n)] = 4(f)(o2)) + [(nf.o2) - S.))/(m - n)]. V.A) (,)(42)) + o(m-1) ..
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exist, we have r/m - tf. with P-) probability 1, and P P) (r m - mo=

Combining all the results above, we find that (3.4) is approximated by

(1- o0)(dI/ 2 5(o)1/. $( _ ,, -- 'exp1-/,[ao-A(fo)]}, (3.5)

where R. = (m - r)A (i-) - a is the excess over the boundary at the stopping time r.

To finish the approximation we need to identify E()C-R-) the excess over the boundary

by a conditional random walk. It seems to me that this topic has not been treated in the

literature before. In the next chapter we shall study this topic and give some applications.

,:- -ll Igm~l~ia'li.l..-.'.p. .. -if f -~ i - . . - " ... . ..
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wher is the expectation corresponding to the conditional probability -(n).
where E.C() M

By Proposition 1 of Chapter 2 we have

f ,((C(2) - s(2)) km-ri /-M-r

ep { (M - r) [0 (C- 8;) 1/ IT( ((-P )] } (3.2)

( ,)/l(2) . 1is(2))1/2 ( ,,,[(2)) -4()2

exp {- (m - r)A (m S11))}

f(2)( (2))

fM (2 p (C)(2)) p (3.3)

= (2,r,)dI/2 i(Co)1,/2. Ij(2)(4 2))1 /2,mA(fo)

where V (2)(p) is the covariance matrix of s}2) under P,.

Substituting (3.2), (3.3) into (3.1) we have

E(-) kM-T)d, IT(2) in- 1/) IV(fo)l11 2 .IT(2)(Ce( 2))I-1/2 ( - 1/2

exp [a - (mn - r)A~ (' ]; : - MO} explm(ao - A(fa))I. (3.4)

It is not hard to show that with high probability $2) f r ( ) under P), soP((2
~(2) ( ms' -~ r(2) (2)2)C( 2 )) -

Similarly,

S , -r (O ,( SO I -)

as-sumes rim - t jo under P(')

For those Co such that

in It:0< t<I-mo/m, (1-t)A I , Co)=o

- .. .,. .,. . - .. - . .. - .- . . . . . .{t. . ... -. ., . .,. ., ,... , . ., .. . .< . , ,.. .,, , .._

i L_ 4 ,_ i ' i.. . ..__ - t I-/ . . . .. . I -t i .. I-
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Define
Q(A) -f P~o,(A)Ima( ( - (1)

Q(A) O'c(A) "f12 )(f(2)) 'AI

where A' - ( o(1 ),a) where A('1 E R a, o is the zero vector in Rd,, di + d 2  d, f (2) is the

density for S,2 ) under P0 where

S. = (('), S.2)), s.') E Rd', S.2) E ,.

Now the likelihood ratio

dQ Sf ..... S.), Smfi,( - A)dA(1) f ( f__ 2)_($(2))

M-)- Po,) f2)(f(2)) f(2) (f(2))fr.lS.) ,

Observe that
f _ AD) = f( \ I f (2))
f ) (f( ))

is the conditional density of Sm given S.

The Q distribution of S,, n = m, m - 1,... running backward from S. = mfo is the

same as the conditional Po distribution of mfo - Sn, n = 0,1,... running forward and tied

down at S(X) f- M((). Under the reverse time scale T is a stopping time so the Wald

likelihood ratio identity gives / ) 1
P(m)(T < m)= P(m)(T" > mo) = EQ -" S T ," mo

I Q ' _

Let

r= in! {n:(m -n)A -S > a, n5 mn- mo}

It is easy to see that the distribution of T under Q is the same as the distribution of m - r

under P()(A) = Po(AI = C121). So the expectation above can be replaced by

f._,( -S,) f(2)(f(2))

,) f (2)- (2))r) fm(() ; 1f<t - ) f (3.1)



Chapter 3

The Composite Null Hypothesis Case

In this chapter we consider the more difficult problem of composite hypotheses. The null

hypotheses considered in this chapter are of the form

Ho: I E Eo = { :( ) 0),

where 0- (0(),0(2)) 0 () (1, ,..,O) E Rd., J(2) = (O), di + d2 = d. So $(2)

plays the role of nuisance parameter here. The stopping rule corresponding to this case is

given by

T = inf(n 2 mo; nA(S/n) > a) where A(z) = () - Oo(z).

In the case of the composite null hypothesis the most tricky part of both the forward and

backward method is to find a measure Q such that its likeihood ratio with respect to the prob-

ability measure under the null hypothesis is a simple function of the stopping rule (asymp-

totically). For the forward method, the Q measure is taken to be the mixture of PO over

a submanifold N of the parameter space 8 e.g. Q = fN PedffN(U)/ f dozq(0), where daN()

is the differential element of the manifold N, see Lalley (1983) for details. For the back-

ward method, which we will develop here, Q is defined by randomizing the starting point

of the sufficieut proce.ss S. according to a conditional distribution. To be more precise, de-

fine T* sup{n, n[ ($S/n) - Oo(S/n)] > 4} and PI(ij(A) - P(A S= A, S =

P* }(A) = P(AI S- ). It is easy to see that

Sn (s. -)f ( )

M- o) } ($" ' *)-( - W'
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Remark 1. The change of variable (2.12) amounts to saying the backward and forward

process hit the boundary at the same time. This interpretation helps us find the appropriate

change of variable in more complicated situations. See Chapter 5 for an example of the

composite null hypothesis case.

Remark 2. The relation that the increment of forward and backward processes have the

simple likelihood ratio e" is not accidental. See Chapter 5 for another example.

Remark 3. Theorem 2 has the following merits as far as numerical computation is concerned.

It relates the excess over the boundary of the forward process and the backward process in

such an elegant way that no matter what method you use you only need one program to

compute the excess over the boundary.

Remark 4. Theorem 2 also implies that if we ignore the excess over the boundary, in general

the forward and backward methods will not give the same approximation.

~:: . ~.
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Proof: By (2.15)

lrn E~exp[-(U,4 - a)]) =(EU,+) 1[ E(et+] (2.16)

where r+~ is the first time the corresponding random walk is positive. When there is possibility

of confusion, we also write U. to indicate which random walk we refer to. By Wald's lemma

E(U,+) = pUy Erqju (2.17)

By the duality lemma

Eq = f1 = o} 1-. (2.18)

where r!! is the first time the corresponding random walk is nonnegative. Wald's likelihood

ratio identity gives

P(,;v <coo) -E(e~v) (2.19)

Substituting (2.17)-(2.19) into (2.10) we have

lim E{exp[-(Ur.. - a)]) = o)~rj =o}/y (2.20)

Arguing exactly the same way we obtain

lim E{e*p-(V,. - af)= P~r;U oo)i =r oo}/pZ. (2.21)

By obvious scale property

pKrU 00) P{r! 00c) (2.22)

P~r;v = c) P{r! 00c). (2.23)

Dividing (2.20) by (2.21), using (2.22) and (2.23), we get the desired result. This completes

the proof of Theorem 2.

It is routine to check that

This proves (2.14). Several remarks are called for.
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Ey a nonlinear renewal theorem of Lai and Siegmund (1977)

lri Ef{exp[-TO(S:rT) - a)) = [E(U,.)1 -  e-P{U, > z)dx,
rn-,0 fc

where Y - (#'(O)) + (XI - Ob'(0))P = OX, - b(P), X, is distributed according to PO and

U= Z& i Yi i.i.d. and each Y has the same distribution as Y. Integrating by parts gives

(E U,)- j e-'P{U,+ > z}dz (EU,+)-'[1 - E(e-u)]. (2.15)

The increment Z of the random walk V in Theorem 1 has the samne distribution as

VK(0 (tf.,O) (1,X)= - t)0 (--) (se,o)' -. (1 - t) (z) I(So~o))

at - t a (0

*~~~~O (1 ) [( 1  ) + 0o ( o) XIO( o)

. -[##'(D)) + (O)f(b'(e)) - X1 '(,"(9))] by (2.11)
, ffi-(OxI - 1(o))

- -(

where we have used the identities 00'(9)) = Ii'(0) - O(P) and 0'(€'(9)) = in the third

equation above.

The likeligood ratio of Y with respect to -Z is equal to

fy(y) o - (9)]fo(%() _ ,

F-z(y)r_.( ,)fo(qu1

The following theorem is all we need to complete the program.

Theorem 2. Let Y1, Y2,... and Z1 , Z2,-.. be two sequences of independent identically dis-

tributed random variables. Also let U, = IL=,, ' = V '. = Zi. If the likelihood ratio of Y

with respect to -Zi is equal to e' then

lim.-.a E{exp[-U,. - a)]) =__z

lim._.a E{exp[- (V,. - a)]) py

where r. is the first time the corresponding random walk exceeds a, px = EX > 0, jy =

EY >O0.

4' . . te. 4 4 4 * - C- ,,
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Expanding the likelihood ratio jP' about 0 and using Laplace's method we have

dQ (X ,X.) = L. exp[t,(O)
dPo

~ exp[I,(j) - (0)] expf[(g)(0 - .) 2 /2](2,.)- 1/2 d# (2.8)

I/2:*' "" exp[O(S,,/n)ll4() 1'1'"

* Substitute (2.3), (2.4), (2.6)-(2.8) into (2.2). We have

Po{mo <t M, (S./m) _ C/M)

z~e~o)< o,¢p ~1,(0)< ) 1/2 Eoe -e (O(SrlT) _)]dO(2jr) _ / . al / 2e _* (2.

By Corollary 1 the backward method gives us

Po{,mo _ T < m, O(S./m) _ c/rn) (2.10)

'/2 x)"/,c (.,)< ,, ,,o/1-to,p 9 -( o) r1 (1 - ,,o)1 ',v. . o. o

To show (2.9) agrees with (2.10), let us make the change of variable

So =-#'(9). (2.11)
1 - tfo

By (2.1) and (2.5) ve have

4, = 1 - t~o (2.12)

Now

d d i7, = -_M _(o)()to = -j =($ (o() -fi($))2'
do d'(0) 1 (2.13)

+ - d o

Substitute (2.11), (2.12), (2.13) into (2.10). We have

Po(rno < "< M, O(S./m) < c/M

( /21r)1/2e .(4))<0/ .(,O<o) kJ(,o)) V_(ik'(M)) I 0 (0,(o)) do.

To show (2.9) agrees with (2.10) it is sufficient to prove

ovle(0)) 1 , = lir Ee{exp[-(TO(ST/T) - a)]. (2.14)

.. ., -,
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E*.{log(f1 /ft, 2 )} (0. - 02j1(0 1)- (1(01) - 1(02)), &1so let

1(.) E - log f) = (s) = Vare(xi)

be the Fisher information. Now define Q(A) = fo P#(A)(2) - 1/2 dO. Tizen

Po{Mo < t < m, O(S./M) < c/r) = Eo{Po[M(S./m) < c/rn I ZT]; mo < T < m)

where CT is the a-field generated by all events A satisfying An [T = n1 E 7(X 1 ,.- , X,,) (see

Chung ( )). Applying Wald's likclihood ratio identity, the expectation above is equal to

EQ{ 1- (SI , STPo{ (S./m) c/m IT), mo < Tr (2

4 - ~e {(Si ,ST) POWe~Sm/r) :5 c/ r ]T; ma < T:5 m} dO.

It is easy to see that P,{limn-.oo(Sn/n) = J(O,0)} = 1, so

Pe{ in a-1 T = [J(0,0)1-1 ) = 1. (2.3)

If mo, m and a are related by m-a q qh < mn a = 'io then it follows that

I if Jh < J(0,0) < qoP{,o < T : <m,) -. 0 fJ(10 fifo.(.)

In this case we have

P{ lim mn1 T=f#}=I

where

4, = .11 J(9,o). (2.5)

If we impose further regularity conditions such that lim.--o n-t(0,,) -. $() holds then

P#{ li a-E- IzT)] 1(#)/(O,o)) =1. (2.6)

Taylor's expansion gives O(Sm/m) = O(TXr/m)+ -(S.,- ST)O'(TXrm)+o,(1) under

PO, so as m -0 o,

I if ,(4#'(U,) <c/n
PU{(s./m) <c/r I &} " if 4CT' 1)) c/ (2.7)

% "
" , - ':I ,.€.,,. ' bolm b"

.- A ~ h M / l
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Rm tends to the same distribution as the excess over the boundary by the random walk

VKC(tf.,0) S§ over a distant constant boundary, where SS (1,n). Now the ordinary

renewal theorem can be used to identify this asymptotic distribution. This completes the

proof of

Theorem 1. Let f = f 0 m, m (fo) < a. If a, m tend to oo in such a way that am -1 
-- ao

and if tq. defined by (2.1) satisfies 0 < tfo < 1 - mo/rn then the following asymptotic relation

holds

P -)(T < .) (1 -to)-d/ 2 l(CO)jl/ 2 I 1/2 exp[-m(ao - ))]-(o)

* where v-(Co) - [E(V,+)]- f.- e-'P{V,+ > z)dz, V " Zi Zi are i.i.d. and have the

same distribution as VKCo(t , 0).(1,X,), X, is distributed according to F, and r+ = inf{n >

0, V, >0

Corollary 1.

Po{T < m, m (S./m) __ c}

~ (m/2r)d/2 <1--o/r)(1 - teo)-1/ 2 V_ (Co)do- o • -

where co = cm - 1 .

Corollary 2.

P,{T < i, m(Sn/m) _ c)

(m/2w)d/2 exp{-m[ao - 4(o)]) /(Co)<_o,O<5o_<-_o/.) - to)-1/2_(.o)emreOdeo

The proofs of Corollary 1 and 2 are omitted here. In principle it follows from integrating

the result of Theorem 1. Corollary 2 needs further simplification. The actual procedure

may depend on the probability model under consideration, but the arguments in Chapter 5

may provide a clue. Next we'll derive Corollary 1 in the one parameter exponential family

using the forward method, then show that the forward and backward methods give the same

U , result. Let J(81 ,0 2 ) be the Kullback-Leibler distance between fe, and f#, i.e. J(01 ,0 2 ) =

ry .:.:.,....-, .....-...... .......-........-.........- •........... ....... '-.-.-..-.......... .-.-. ,.. ..
t. , = d. ,.r.._.-. _:. .:._ , - '. " '- - ,',' . . . . '.- - . . . . . . . . . . . "
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By Wald's likelihood ratio identity

"(n) {-y - ST, - e < z; T. < m11- O1/ 2 }

"E dP(O,#()) ($,', S.(-.)/,); '" ST. - c < z, T < m(1-)/2

Applying Lemma I and Scheffi's theorem (see e.g. page 184, Billingsley (1979)), the expec-

tation above can be made arbitrarily close to pl, (o2) • . - C < z, T, < m( a )/2} which

in turn can be approximated by Pl0,0(2)){- . ST, - < z} when m is sufficiently large. That is

IPp(1){'7 ST. - C <5 X) - ST. - c :5 z}

+, p?{' ST, - C Z) - " s(1) - S 5 Z, Te z, M-a 2' m a

+ IPO 2 ") ST, -c _< z T <m(- )/2} - P(0,1(2)){ 7. ST. - C _< z e _ -

:'S- JP(o),,(,){ (IST, C :5 _. T, <(2) - )/ }  (,y~)7 ST,, <_ :5}1

for m sufficiently large. This completes the proof.

Although the theorem above gives the asymptotic distribution of excess over a local

linear boundary, the problems of interest require that c = 0(m). For this case a 'restarting

argument" is needed. The restarting argument can also be used to determine the asymptotic

joint distribution of stopping time and excess over the boundary. Before we get into this

let us find the asymptotic marginal distribution of the stopping time first. In Lemma 4 and

Theorem 5 below the setting are the same as Theorem 2 except that e = corn for some co > 0.

We will need

Proposition 3 (Borisov, 1978): Let Y i = 1, 2,... be a sequence of i.i.d. random variables

such that EYi = 0 Var Y, = 1 and the moment generating function E(€oYl) exist in a

I neighborhood of zero. Also let V. = = Y, W,(t) be the random polygonal curve with

vertices at (k/n, V/vf ) , that is

w.(t) n, t t +
- = +Vn t - )Yk+, if k <t +1

"__ n n

Then the distribution of Wn(t) conditioned on W.(1) = 0 converges to the measure generated

_ ' ' ~...................-'-'.nZ ; - '- -',r-,: --......................... 4
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by the Brownian bridge W°(t) = W(t) - tW(1) where W(t) denotes the standard Wiener

process.

Lemnm 4.

lir m < ,2T= 2())

l,(m P(- Ai <Z~ =4& T)

g4~ (2))C (2)) I
where (2) a' 0, (2)),2 = Vare(o)('y S=) is the variance of -y S, under P,(.). -'(z) is the

distribution function of standard normal distribution.

Proof: First observe that it is sufficient to prove

lim .P(M T,-°/ < X = (x)0. 2 -

where p., -1 Co. Because POO may be obtained from p(m) by integrating out C(), and by

Proposition 1 of Chapter 2 under Po 41) C(')/m is degenerated at zero this is true because

in Chapter we have assumed that "p(0) 0. Now

p.1T, - e A-IT, - "Y .ST, + .ST. - C

+

" ST, - e is the excess over the boundary at the stopping time T. Since

{,. ST. -c > in'} C {T. 0 [(1 - 8)t, (1 + 6)tl)}U { max X."X > M}

where t = c/p.1 .

P "{.ST.- c> <[ , I max 'Y.X. > m'}
ST,- C>(') _ (),p<.6<, I +6+ ) P

By Proposition 3 lim.,-o P I){T, [(1 - i)t, (1 + s)tj} - 0 and by Lemma 8 below

p(-) { max .XI > m') 2btP({) (1, X ,I > m') 0 as m -oo.

So -7 ST. - c = o,(m') for Ve > 0. This shows that

, - e

9: (1- p., e'
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has the same asymptotic distribution as

p-IT. - 'Y ST.

Let Wn y - Sn - (y o)n/m. Then

IS-ITe S1T. WT. zw =}

Notice that

{IWT. - W 1> Cmil 2 } C {T [(1 - 6)t, (1 + 6)tJ} u { maX Iw - Wgj > cml/2}

and

{ max Iw.-W, > Em/2}C (1 { tmax IWi 1 - w ),l > jm'/2}.

So
P(IWT. - WI > CmI/2 1 W. = 0) < P{T. f [(1 - 6)t, (1.)t] I W,, = 0}

+ P{ max IW. - W(.-)lI > - I1/2 I W. =}
S(1-6l)<_n~l1+dlt 2 m=

We have shown P{Tc f [(I - 6)t, (I + 6)t] I Wm = 0) - 0 as m - oo. By Proposition 3

P{ max IWn - W(l-)I> -m1/2 I Wm O 0) P{ sup IW(a) 1>1"
(,-6)t<.<(i+6) 2 0=o_.<2,eoua' 2

which tends to zero as 6 -- 0.

This shows that
WT, WT-W e Wt

has the same asymptotic distribution as but by Proposition 3 W has asymptotic dis-

tribution N (o, 0,, (1 SAn) n). This proves

lim P") H= (Z).

This completes the proof.

• 1
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Theorem 5.

liP,, i - )oi2 c(g2) )I

him P.() < Z,7 . ST. - C < y

- "o,i (2,)

= (Z) li P(o,0 (S)){'/• ST. - C <

Proof: Define T' - inf{n, -1 S. > c - m1 3i}. Then

{T - T' > m2/} C{ max .S" < C{ max '.S -fST, m M/s}.
O<nST1+C"&2s  - T<n<T'+cM'l/

So
p(-){T- T'> m2/5} < P,{ max yS -y . S7, < m1/ 3}

= ('){ a _ _ : M/3 :p(m){~ ,Y . ,/ 3)
:(5n){ cm2 ,/s. < S oml3 } < P{,. 6 <

{ dP(") }
dPe"20((S)} / 7S dP(°'S(m/))

- P-lir Vo,0(,((,,)) { I1 . ,

by Lemma 1 and Sheff 's theorem.

It is clear that Po0 12){'. Sr,,/5 < m1/3} -. 0 as m -- oo by the strong law of large

numbers.

The argument above shows that IT - T'I = op(mI/2) which implies

lim P(M -c--S < Z,/ ST. - C < y

To_ / (2)

urn pfm) T< /,2 Z,- -sr S- e

Now the idea is to restart the process from Sr,. Define 7T = inf{n, 7 S,+r, > c) and

......... ................. . . . . . .... ..
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R & = (, -,v ,,); T"(1 - 6)Cj,/ : u ,,< (1 + )C,/,,, i = 1,...,,) ,,here = ( , .., ,)

U 2)
As = C ,-

Then the probability above equals

_m (c - S7-) <p(Ji))-', ) E du} dv)

since lim.-ee P ') {ST, E R6)}=1

Now by Theorem 2

I(,_ {7" ST,€ (C -7ST,) < Y)} -HM P(o,,)}{7" ST. - < Y)} <

on the set A, n Rj for 6 sufficiently small. This implies if we first let m - oo and then 6 -6 0.

Then we have

lim P(-) T - c/,2)

lim P(O ,#(c'))(,yST - C < } P {A,}

= J().mi P(o,(,)){-" ST. - C < Y}

This completes the proof.

The next theorem is the main result of this chapter. It is also the result we need to

complete the approximation in the previous section. Let T. = inf{n in, mH(So/m) > 0).

From here to the end of the proof of Theorem 6 S. will be defined as Sn = ' Xi where Xi =

(1, X,). Xi i 1, 2, - is an i.i.d. d-dimensional random vector sequence. The distribution of

Xi can be imbedded in a d-parameter exponential family. The reason for defining S, in this

way is to include a more general stopping rule which is needed in applications. Before stating

the theorem we list some assumptions which are easy to check when applying the theorem to

-...::..,.....,.::......:..,........-..q ,. .;...-..........,-._.._............ :.........: .....--......-............... .......... ,..............,-..............-...........,.................. .,
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a particular example, but it is tedious to impose conditions on the function H which imply

these assumptions.
(1) 3to > 0 such that lim,,,-.o P, {I' - toP(> 0

(II) H is continuous in a cone C containing the line of drift (1,,(0, 0 ))).

(III) H has continuous first partial in a neighborhood of top and -" is 6 0 where y VH(to).

Let Mi = {(zl,'",z;+1 ) : H(zl,' ", z+) < 0}. If.assumptions (II) and (III) are

true, then by the implicit f.action theorem there exists a continuously differentiable func-

tion f(zI ... ', z) satisfying H(", - ( , z, g( ', *, =--- 0 V(z 1,.. , zd) belongs to some

neighborhood 0 of (to;&,," ',topd) and 9(top,,-.. ,topd) = topA+i.

Let I = {(X1, zd+l) : zd+1 = 9(z," ,Z)} be a d-dimensional surface which is well

defined on 0 and extend in some smooth way to R d.

(IV) Boundary (M) n C = C n 7.

Now we are ready to state

Theorem 6. Tf assumptions (I)-(IV) hold then

lim P( ){nH(S/../m) <_ z} = lim P0( #) (_ ST. - c < Z}.

Before we go any further, let me make some remarks.

Remark 1: The problem is invariant under rotation so we may choose the coordinate system

such that is = (0,0,-.. ,O, Il).

Renark 2: The limit on the right hand side of the equation above can be determined by the

ordinary renewal theorem.

Although the proof of Theorem 3 is very complicated and technical, the basic strategy

is not difficult to explain.

It will be shown that to determine lim.-G.P (m(ST,/m) < is equivalent to

finding the asymptotic distribution of excess over the hypersurface ml by the conditional

random walk. In Lemma 4 below we shall exhibit a surface mn(k) which is 'near' ml. The

idea is to condition on the position of the random walk at the first time it crosses mY1r then

.4%
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restart the random walk from there. Lemmas 5 and 6 below amount to showing that the

restarted random walk will cross m7 in a time of magnitude o(ml/2). Now we can simplify

the problem in two directions. First, by Lemma 1 within the time of magnitude o(ml/2 )

the conditional random walk behaves like an independent one. Secondly, since the restarted

random walk will cross ml within time o(ml/ 2) the only important part of ml is a set of

diameters o(Mn/2), within which ml beiiaves like a hyperplane. (To every man on the earth,

the earth is "flat"). Finally, an argument like the proof of Theorem 2 can be used to finish

the proof. The proof of Theorem 3 is preceded by three lemmas.

Lemma 7. Let mY(k) = ml - kp/IjpII where k is a positive number which may depend on

m. There exist Q 2 > at > 0 such that a2k :- d(ml nl C, mT() nl C) > ak.

Proof: Let M = supco IjVg(z)ll, e = (2M)-l. (If M = 0 then g is constant over 0, and

Lemma 1 holds trivially. In fact d(mnl nl C, M r (k) n C - k). Now

d(mr" n C, m'(") 1 C)2 > in(llm(z - V) - k,/llI, 12)

fi- inf (m2 l - yii2 - 2mk(z - y, IL/IlsHll) + k2 ).z ,are_.YflC

Note that

m 211Z - i2 - 2mk(z - v, Is/llull) + P

= m2 [ll(z,..,z) _ (I,...,yd)j + i(Z,, ,d) -g(y,., d) 121

(4.2)-m k[g( xl ., Z) - O(Y ,., Y)] +

- m211(XI, Zd) - (yi,, ", v 2)l + [M((Z,, ,) - O ,v, ) - k]2

where the first equality follows from (is/llul) • z = (1 ,'-' , x.). Let

l= inf'(lm(z - y) - kii/ll 'tl; z, v Er In C, I1(,,. .., z,) - (yt,", ,)l > ek/m}

el = in '(lm(z - v) - ki/l1IpIII; z, y E .7 n C, 1(1(z,"" , z,) - (a,"", Vd)l 1 :k/m}.

By (4.2) el > 12k. By the mean value theorem

I (,,', Z,) - (Y," vl < MI(Z,', z,) -(V , Y)ll

so (2 > (k - eMk) > k2/4, clearly d(mY nl C, ml ( ) n" C) > e1 A 2. Also k 2! d(m" nl

C, m7'(k) nl C) by the definition of mT(M). This completes the proof of Lemma 1.

* . . . . . - - .: . .- - . . - - -. . . .
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et X, = (P)... M I) I = jx=I 1z'. The following lemma is true.

Lemma 8. limm.-, mP~m) { IXi > m'} = 0 VC > 0.

Proof: By sufficiency the conditional probability P) is independent of the parameter 0, so

we may take 0 = U, EoX, = fo

mPI-)'f{XI 1. > m'} = mi 1(z) fm-i(C - z)/m(C)dz. (4.3)

By assumption sup, Jf.(z)j < B for all n > no, and proposition 1

f.(f) - (2rm)-/1J'(fo)l-1 /2 exp-nO(fo)}.

By (4.3) (Co) = 0, so for m sufficiently large

le-(C) - (1I2)(2-,,O-/ 2 1 (Co)l -1/2 .

Now

ff(z) fn.-,( - x)/f.n(o)dz < 2B(2wm 3 1T(Co)I)1/21 f(2)d

< 2B(2rmIZ(CO )1/2I(E(e llx 'l ')) VA > 0.

Since the moment generating function of x1 exists in a neighborhood of zero, E(el l xll' ) < oo

for A sufficiently small.

It is clear that as m -. oo

2B(2 p(f)j)*l2e- / '  E(e x llx ' ll ' )  0.

This completes the proof.

Define

T -= inf{n > mo : S. crosses mY'(k)}.

Lemma 9. For any given 6 > 0 there exists m6 such that for all m > mi the following

inequality holds

P(,) { a 4 , > d(S (.1), ml n C) _ asm/3} > 1 - 6

where a> a3 > 0 are independent of m and 6.

-~%I
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Proof: Since with P() probability close to one the conditional random walk S. stays in the

cone C for n sufficiently large, and we have

il () -(1/3) 11. + m 1/3dS (ml n6)
( ) " d - C) 1 - (4.4)

P(") {d(S ,ml n C) d(m (-" *) n C,ml n )C) - 1TmS -l (4.5)

Clearly

IP(=) "I ( m1 - -(n,)

T;m 03I /)1 > m., <~'' flm}I <

for some constant fl > 0 and m large enough and
P(-) " /a " </}

P (,{llX (m/,)l > in',Tm71..
e, {f max 11IX4. > ,):5 < B,-,{IIXjI. > m'}.

The last quantity above tends to zero by Lemma 5. This implies

,(,) {II- T /*jj.>m" 6

for m sufficiently large. Choose c < 1. In view of (4.4) and (4.5), the proof is completed.

Now we are ready to prove Theorem 3.

Proof of Theorem 3: Let T*, = inf{n _i m0 , S, cross ml). Since the conditional random

walk S, will stay in the cone C with high probability Vn _> mo, by assumption (IV) T, = &

with high probability. By Lemma 6 the conditional random walk starts at S(m 1/,) will cross

ml in a time that is Op(ml/S). Now the idea is to compare ml with its tangent plant at

mtop in a neighborhood with diameter that is O(m'/-) via a Taylor expansion

mf (A) = mf(O) + Vf(O)' . h + !h' f )().h

where flhl = 0(m'/"), 0 < 6 < 1, so the conditional random walk starting at S T(m/9) crosses

ml as if it crossing a hyperplane HP which is 0(ml/3) away,

HP= {Z; . =c C,} - m = o(m/).

.. - ' " . .. . ..... - . -. -. .i :-.-. - .:-';,i " -i- .i.. .- '. - -:': :" } -- '} .:,:,-:"-. --. '.'- : ,U ,-*.':,.':.'.- :-
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S. crosses HP when S,, -y crosses the constant level Cm. The excess of interest turns

out to be the excess in the normal direction, in the cue of a hyperplane it equals 7 ST,, - Cm.

Let

A, {Excess over m7 in -y = VH(to0) direction :5 z}.

Then (by the arguments above)

lm P(m){A}) lim E..{P.. [A1 I t,A_00,-, ' P CM C , J%-,)}
= urn. E.(in) p(m-rT"'/ ))[,,,. Cm~ 1lira.E-(){P (- .STr - c. <5 5}

where E(.I/3) is the a-field generated by events prior to TmW" )

~(2) = (2) S

Also let (2) = (2)/(m - T( -' }) A2 - {[(2) C (2) < 6, T.. = Op(ml/)}. It is clear that

A 2 has P(") probability contain close to one as m - co.

Now

IE(m) ((7-TS( ), , ,ST.. -C. :5 []}- 7im P ( ))[7 • S7. - 5 1
CM ~ ~ Cm e z} 0 lim (2(4

_<, I,,-T , [. st,,. - m < z]} - _{(mtrn (7.ST_,. - Cm <z); A2)1

+ ')(-P(y-_"")l(7 - ST - cm < z); A2 )

,() {lim Po,9, (4))) (y St. - c : z); A 2}

E(, { Jim Po (y Sr, - c : z);A 2}I

+ IF(- )(, im P ST, -C _5 z); A 2 ) - irn P . -- _ )5

= Ii + I + I + 14 <4U

where 12 can be made arbitrarily small by Theorem 2 and Is _< e by Scheff6's theorem since

the density of P(0 '( )(C0'))) tends to that of P(0,0()(c( )) as m , Co.

Let us define the excess R. to be the quantity such that 5 T,, - m l mT. A Taylor

.. , . , - , .. - ., - .. ,-..-. .,.: " . . .,•.- , .. ' . . . ,•.•, ..",. .. . .... . . .. - .- ., ,.. .. _!
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expansion shows that

mH(S T./m) = mH (ST.. - (I/IIjII)RTm) + VH(z). R---IIn'I "

The first term on the right hand side vanishes by the definition of 1.

The second term tends to the excess over my in the normal direction of my at pto since

z -. ;o. We have

(m) mH lim

The proof is completed.

Combining the idea behind the proof of Theorem 5 and Theorem 6 it is not hard to see

that a theorem like the following should be true. The proof is omitted, since every relevant

step has appeared in the proofs of Theorems 5 and 6.

Theorem 10. Under the same assumption in Theorem 6, the following equality is true
.i (,n){ T om__ _ ,-o

imP"0 2 I (1 -to ) torn < m' .H(ST./m) <_ y

=t 4(). lim, P(0 ,){. -T CV}.

Now we are ready for some applications. The first application is the approximation of

the conditional probability Pm)(T < m) in Chapter 3. By (3.5)

P (")(T < m) _ (1 - tc0)-/ 2 jI[Co)I1/2 . - to), (2)I1-1/2

(71e-R-) exp{-m[ao - A(,fol)

where Rm = (m-r)A[(C-S,)/(m-r)j-a is the excess over the boundary at the stopping time

r = inf{n: m; (m-n)A[(f-S.)/(m-n)j > a}. In this case H(v) = (1-to)A[(fo--V/1-to)
where v -=(to, u) E Rd+ ' , to E R, v E Rd. By Theorem 3

, (,"('' e-a. 0 - e-P{U,., > z}dz • [EIU,+)]-'

where Y = VH[tfo(1, ,0(2) (2))))]. (1, X1 ). X, is distributed according to

and U. = E .iYS.

r , ., - .,- . .. -- . . .. ,.,*- - .a . . . .... - - . ..
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The second application is concerned with the so-called "change point" problems. Assume

that X 1 , X 2 ," X. are independent normally distributed random variables and that Xi

has the mean value pi and variance 1. Suppose we are interested in testing the hypothesis

Ho : Al .... against the alternative H: there exist k, I < k < m- I such

that Pl = "= k # Pk+i = h+2 = Pm, if k where known, the problem would

be a two sample test of the equality of the means of the first sample X 1 , X 2 ,' ,Xk and

second sample Xk+l, Xk+2,-', X.. For this problem the log likelihood ratio statitics would

be Ak, = k(m - k)(Xk - .9k,.) 2/M where Xk = k-1 Ek X, and Xk,. - (m - k)-  + X,.

Since k is in fact unknown, the log likelihood -ratio statistic is

max- A.^ (4.6)
<n<_m-1

and the significance level of the likelihood ratio test is the probabiity under Ho that the

random variable (4.6) exceed some constant c.

Let 5,, = E' Xi. Simple algebra shows that

A.^ = (S. - nSm/m)2 /n(1 - n/m).

It is easy to see that under H0 the random varaibles

Sn-nSm/m n= 1,2,-..,m- 1

have the same joint distribution as S1 ,S 2, ",Sm.-I given that S,, 0 so the significance

level is given by
P(m){T < m - 1} (4.7)

where
T= inf {n: IS.1 b[n(1 - n/m)l1/2}
b fi 1 2 .  (4.8)

We wiil prove an approximation formula which contains (4.7) as a special case.

Theorem 11. Let T be defined by (4.8), and assume that b -. co, mo -" o, m, -'. 00,

and m -- co in such a way that for some 0 < to < t, and Al > 0 mi/m - ti (i = 0, 1),
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b/M/2 ijs,, then as m - oo

P , 2(C/2-,)/2eC/2 'v(. +f + 12e-l)dC

where v(e + i4l1) will be identified in the proof.

Proof: Let 0(,) p m)df. (21r)-'/'. An easy calculation shows that the likelihood

ratio of X,"', X. under Q(m) rlative to P( ' 1 is

[m(m - n)/n]'/ 2 eXp [S.2/2n(1 - n/n)]

from which it follows by familiar argument that

Pom)lno < T < ml} = m-' '0 E(- ) {[T/(l - Tim)]' 2 exp [-(1/2)Sl/T(1 - T/m)];

mo < T _ ml}dC(2;r)'/
2

=JE m) ( {TI(1 - T/m)] 2 exp [-(1/2)ST/T(, - Tim)]; me < T < m, df. (2;r)-/-

(2.).1/2,C/2 J Em){[T/(1 - TlM)]1/ 2

exp [-(1/2)(S2/T(I - T/m) - c)]; mo <T 5 m}d.
(4.9)

Solving the equation t = '[t~'(1 - tf)]1/ 2 for tf, we have

We know

Solving the following inequality for C, we have

tj < I < tj III (t - 1)1/ 2 < < 'UI(t I  - )L/ 2 411
I + 0 (4.11)

or -p,(to - 1) / 1 ( -l

It is easy to see that
a_

lira P(- )( 0 < T _5 m) = I for f satisfying(4.11).
1 O
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Applying Theorem 3 with H(z, y) = (1/2) (4: - I) and tfjA = ( tf). we have

E'- {exp [- (1/2)(ST(1 - Tim) - c)]} 00 [ E(U,+)F'ecP{U,+ > xjdz

where
Y = VH(tp) .(XI + , 1)

- + tX + (1/2) _ +

U,. = , Yj and X, is distributed according to the standard normal.

Define

f 00[E(U,+)]-'e-"P{U,+ > x) = V( + A2C-,). (.2

v(0 ~ 1  (4.12)

Combining (4.10),'(4.11), and (4.12) we obtain from (4.9) that

P() mo < T eo m 2(e 1/2e-,/ 0 , - _(e + A2 C-')d.

This completes the proof of Theorem 11.
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Table 5.5

Significance Levels of Group Repeated t-Test

# of observations analytic Monte Carlo

in a group a m0  m approximation (2000 replications)*

2 3.65 8 40 0.050 0.052 ± 0.001

3 3.6 10 55 0.049 0.049 ± 0.001

4 3.6 10 70 0.051 0.052 ± 0.001

5 3.6 10 80 0.050 0.052 ±- 0.001

7 3.6 15 120 0.047 0.047 ± 0.001
*Importance sampling is used in the Monte Carlo experiments above

gill; ".. - . ' . "." +. "
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Table 5.3

Significance Level of Modified Repeated t-Test

Analytic Monte Carlo

a C Mo In Approximation (6000 replications)

3.8 3.6 7 30 0.050 0.053 ± 0.001

3.95 3.6 7 40 0.050 0.052 ± 0.001

4.0 3.6 8 50 0.048 0.049 ± 0.0009

4.7 4.2 10 80 0.028 0.027 ± 0.0007

5.0 4.5 10 100 0.023 0.023 ± 0.0066

Table 5.4

Powers of Level of Modified Repe .ed t-Test

Analytic Monte Carlo

a C mo m r7 Approximation (2000 replications)

3.8 3.6 7 30 0.8 0.952 0.956 ± 0.005

3.95 3.6 7 40 0.7 0.960 0.959 ± 0.004

0.5 0.717 0.727 ± 0.010

4.0 3.6 8 30 0.6 0.946 0.943 ± 0.005

0.4 0.613 0.626 ± 0.011

4.7 4.2 10 80 0.5 0.947 0.937 ± 0.006

0.4 0.779 0.770 ± 0.010

5.0 4.5 10 100 0.45 0.940 0.938 ± 0.005

0.3 0.553 0.550 ± 0.001
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Table 5.1

Significance Level of Repeated t-Test

.Analytic Monte Carlo

a m0  m Approximation (2000 replications)

3.8 7 30 0.052 0.053 ± 0.001

4.0 8 50 0.047 0.048 -0.001

4.5 10 75 0.032 0.033 ± 0.0006

5.0 10 110 0.024 0.023 ± 0.0004

*Importance sampling is used in the Monte Carlo experiments above

Table 5.2

Powers of Repeated t-Test

Analytic Monte Carlo

a ma m P Approximation (2000 replications)

3.8 7 30 0.8 0.946 0.951 ± 0.005

0.6 0.734 0.742 ± 0.010

4.0 8 30 0.6 0.934 0.933 ± 0.006

0.4 0.584 0.596 ± 0.008

4.0 10 75 0.5 0.950 0.948 ± 0.005

0.3 0.518 0.522 ± 0.011

5.0 10 10 0.4 0.882 0.889 ± 0.007

0.3 0.581 0.581 ± 0.011
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L

where in the equality above we have used Theorem 2 of Chapter 2 to obtain

- )-+{[exp(2ao/(1 - it.)) - 1] 21) • {(1/ 2 )log(1 + j2)/[ 2 _ (1/2)log(' + 02)])

= v+{[exp(2ao/(1 - i)) - 1]1/2). [ao/(1 - ifo]

(exp[2ao/(1 - Io)] -1- ao/(1 -

and the equality

M (,( - jf)-, 2) - 1/2 = 2 - 1/2 - (j - i)-2]-S/2

= 2- /2. -/. exp[3ao/(l - ifo)]

Next we consider the group repeated t-test. The stopping rule we are interested in here

is "

rk =inf n; n =mo +ik, i=O0,..,m -mo] ,nA(Sflfn)> a)

where k is the number of observations in a group. It is easy to see that r is a stopping time.

A moment's reflection we find that the corresponding significance levels and powers are the

same as k = 1, except the excess over the boundary part. To find the excess over the boundary

part, it is sufficient to identify the increment of the random walk which generates the excess

over the boundary. In this case, using the forward method, the corresponding increment of

the random walk is U= - 1Yi where the distribution of Y's are given in (5.2). Using the

backward method, the increment of interest is V= Z t=l 2, where the distribution of the

Zi's is given by (5.4).

Tables 5.1 - 5.4 below give some examples of the approximation of powers and signifi-

cance levels of both RST and MRST. For comparison, the results of Monte Carlo experiments

are also included. For details of numerical computation, see the Appendix.
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What remains is to approximate

Since (Cl, C2) is located at the boundary of the set A, the multidimensional Laplace method

does not apply. The argument below uses a chance of variable to convert the integral into a

form which can be handled by iterative approximation. The change of variable is suggested

by Fig. 1.

I Aexp[-m(o(f2) - t71i)df 2dei

- I o L exp[-m(o(Y2) - v/I 2 ]vi d/.dyx where y, 2 Yie1/ 2 . 2 =

fo f1 12- i2 1f exp[-m4/o(y2))]/2 CO exP lr/2 o)e (5.23)

j exp[-m(O(uY2))]• (mI )-1 exp(m, )2coldv 2

- (,Y)- jo e-m9(sdV

where the function g(') is defined by (5.19). Now Laplace's method can be used to approximate

By (5.22), (5.23)

P.,(mo <r < mn A(Sm/mn) < c/rn) -. ex."p[-m(a0 + rl2/2 + u(Cs)]
''-1 2 q .- [2,-,eI(j)2. (1 - io)• 1i (1_, - °C)-, C2)l]

= exp[-mlao + r1/2 + .(C)]" v+(exp[2ao(1 - ) - 11 /2} . exp[3ao/(1 - i,)] •0

'. {exp[-a/(1 - ieo)J - ao(1 -/io)P 1-
. [2xm( + (1I2)co,1/2)(1 - jo)Sli/2

(5.24)Pq~m :5r <m, (S./) <c/m e.cplm~ao+ r2/2+ gj2)

AAA."
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fE =0,

Figure 1

Since V*(f2) > 0 g(f2) has minimum.

Let ;/2=z be the minimum satisfying

z 2 + coiz - I=O0=: z={[(con)' + 410/- co,/2

= 2 (/I(e2172 + 4)1/2 _ C0972 = [(e2rl2 +)1/2 + 1o~2/4 (.0
=2 z 0;/ (2 0 -c)l + )/ + Cori (5.20)

As we pointed out earlier the only important part of the integral (5.17) is the integral

over an arbitrarily small neighborhood N of (i )*Part of the intergrand of (5.17) is

approximately constant over N, namely

(1 e)-1/21T[11 (1 t- l 21/2Vfo

ftI- tcO) l/IZ[j& (I~ )1 2J~~~o over N (5.22)

where i(O satisfies (-1/2)(1 - i)log{1 - 1j ji;1/2( - a/rn.
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0( 2) in a neighborhood of 1

Oo(e 2 ) O #o(1) + #'1l)( - 1) + (1/2)"1(*)(2 - 1)2

~(1/4)(C2 - 1)2  i

so

J =mno(f2)dC2  exp(-mz24)dz (4//m)1/2. (5.16)

Substituting (5.16) into (5.15) we have

Po{mo _< r < m, A(S./m) < c/rn)

e -(M/Ir)1/2 (1 - to)-/21:(fi(j - te) - , 1)1-1/2, v_(f, l)dfi.

The change of variable iog(1 + 92) - -log[1 - e(1 - tfo)- 2 ] transforms the expression above

into 2e-(a/jr)1/2 fjbO[log(1 + 2)-11/ 2v+(P)d$ in agreement with (5.1).

Now let us bring our attention back to (5.14) with q/ 0. The integral to be evaluated

is.-

f (I te0)-1 /2I[CI(1 te0) 1 ,C21 11/2 v-(fo)exp[-r(o(f2) - qfi)jdf 2dfi. (5.17)
JA

The set
A = {0 < tfo < 1 - mo/rn, A(fo) < c/m)

= {mo/m , ti < 1, (1/2)og{1/11 - eI/f/2 1} <c /CM (5.18)

= {C1 < e1/2 < Co)

where t, = 1- tC0 and co = (1 - e--k)1/2. el satisfies (mo/2m) log(1/[1 - (cmo)2 /m]} = ao.

It is clear that the only part which is of first order importance in (5.18) is the integral over a

small neighborhood of (Ci, 2) where (l, i2) minimize 00(f2) - q over A.

We now proceed to identify (&, e2). The following picture helps us locate , ).

It is clear from Fig. 1 that the minimum of n(f) - over A occurs on the curve

11/f2 co. On this curve o(C2) - qf1 is equal to

(1/2)(f2 - 1 - log f2) - vnOC2E/ 2 = (C2). (5.19)

dg(f 2) f"
= 112)11 - Z" - €on 2).

I
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Next we consider the problem of approximating the power of the modified repeated T-

test. It is easy to see that the powers of the modified test depend on the parameter p, o2 only

through r = p/u, so without loss of generality we may take a = 1 and p = n/. By symmetry

the power at !/equals that at -q, so we may assume q > 0. The power of this test at t/, by

definition, is equal to

P"{mo < r m r} + P,{r > m, A(Sm/m) > c/")

= P,,{mo <5 r < m, A(S/m) < c/r} + Pq{A(S./m) > c/r,}.

The second part on the right hand side of (5.13) can be easily obtained by approximat-

ing the tail probabiities of the noncentral T-distribution, so it is sufficient to approximate

Pq{mo < r < m, A(Sm/m) < e/m). By Proposition 1 of Chapter 2 under P., S. has

asymptotic density in the following form,

fmq(f.) (ziw)- ( -T( I 1 /2 ep[-((Co) - 176 +-7//2)]..

Unconditioning (5.2) with respect to fm,(mf) gives

e-(rn/2r) JL(1 - t,,)l/2 l[ (1 -eo) 1, 2 ]r1 2a_(Co) (5.14)

exp[-m(0o(f2) - 'i + ug/2)]df2dfl

where A = {O < to < 1 - mo/rn, A(fo) < c/m), AIe , denotes the cross section of A in the f2

direction when C is given and A = {f, 0 < to < 1 - mo/m, A(Co) < e/m). Observe that

when q = 0 (5.14) should reduce to (5.1). The following argument shows that indeed it does.

When n/= 0 the integral part of (5.14) reduces to

IA [L (1- t~o)-I/I12(Ci11 - coY()-1' )l-1/2V-(fo)e-m°(f2)d2] dfz. (5.15)

Since 0o(1) = 0 m min, 0 (z), it is easy to see thta the integral over the interval m=

(I - e., I + cm) with lim.-wo cm = 0 constitutes the major contribution of the inner integral

in (5.13). For m sufficiently large (I - to)-l/2 I(f( - t) - ,C 2 )1-1/ 2 V_(Co) is effectively

constant (with respect to f2) over '. We still have to evaluate f e-m0()dC2 " Expanding

*L| -.
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The first term on the right hand side of (5.10) can be computed easily by calculating the tail

probability of the t-distribution. So the main task here is to approximate the second term

Po{r 5 m, A(Sm/m) c/m}. Using the backward method, the procedure of approximating

Po{r :_ m, A(S./m) < c/m) is no more complicated than. that of Po{r :i m). The only

* difference is the range of integration is changed. To determine the range of integration, let us

recall that in obtaining (5.8), we made the following change of variable log I + p2 . logil -

(z/1-to)2J, where z - z,€ 1/2 z and t(o satisfying (1 -tq) log{[1 - (z(1-st-)] - } 2ao.

Now

Af(: A() < c/m * {z : (1/2) log[(1 - z2)-] < c/rn) 4 (Z IzI < #2(1 + 02)- 1}

where 2 satisfies c/m = (1/2) log(l + 82). Clearly

1 - tCo = 2ao[log(1 + p2)] -  log(1 + 92)[1og(1 + 02)1-1

81 satisfies a/m= (1/2) log(1 + 02). Substituting z = 62(1 + P2)-' and 1 - tfo = log(1 + J2).

[log(1 + 02)]1- into log(1 + 92) - log{[1 - z2 (1 - tco)-2] - 1} we find the lower bound of the

range of integration 0 satisfies

2 rlog(1 +e) P 02_
1 +- 2 log(I +02)J -1 + (5

Of course we take only the root 9 > 0 of (5.11). Note that when 02 = 01, 0 = 1. The upper

bound of the range of integration remains the same. We have

Po{ro - r < rt, A(S./m) < c/m,) 2 [(a1),/,- °  l( + 02 )1-1/ 2 .+(O)do. (5.12)

The sharp-eyed reader may discover the possibility of obtaining (5.12) by modifying

Siegmund's method, mentioned in the last paragraph of page 32, along the same line of

arguments on pages 11-13. This possibiity does not exist because there exists a deep-buried

measurability problem. To make a long story short, the two dimensional sufficient process

= X,, En= Xj2) is not measurable with respect to the a-field generated by the maximum

invariant process (XjX 2, XT'X 2,. .,X 1 X).

Iq.

.....................................
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so Y has density
Go

f =() 2(1 + 92)9 - 2 Zel/2(2 2)-(i!)-[r(i + 1/2)]1-'2+1/2)
j=-O

exp{(1 + 02)• [y - 1/2 - (1/2) log(1 + 02)]0 - }

•(02(1 + 02)-1[1 + log(1 + 02) - 2y]i- 1 2.'(-oo,I/2+(1/2)lo(,+e'))(Y).

After some simple algebra we find that

fY(y) - 0-1 exp{(] + 92 )I - (202)-1[2 + 02 + log(1 + 02)]). -(9- +
j=0

[r(j + 1/2)1-' • 2-i. ( {!)-i. (1/2 + (1/2) log(1 + 02) - V)i-1/2 1(_=,/+(1/2) Lg(,+E})

-Z has density
cc

f-z() 2 -02 exp[-(292)-I(1 + 02)1[(202)-I(1 + $ 2 )JI(j!)-I[r(j + 1/2)] 1 2-(i+1/2)

j=

• exp{- 2[y - (1/2) - (1/2) log(1 + 2)]) • {0-2[1 + log(1 + 02) - 2y]l j- 112

• (-00,1/2l1+log(1+#1)]))(Y)

0' exp{9- 2  - 1 - 02/2 - (1/2) log(l + 02 )J) 1:(0-' + 0-2)j.

* [r( + 1/2)l-'2-i{(1/2)[1 + log(1 + 02)] - ,}i-'/2 .1(_,,/2,1+,g(1 +,)])(V).

The likelihood ratio of Y with respect to -Z is surprisingly simple fy(z)/Jfz(z) = c.

Now applying Theorem 2 of Chapter 2 we have

v+(0) = v-(O)pz/py. (5.9)

Simple algebra shows that pz = EZ = 02 - (1/2)log(1 + 02), py EY (1/2)log(1 + 02).

Now by (5.9) it is clear that (5.8) and (5.1) agree. Next we consider the modified rLpeated

t-test. The stopping rule is still r, but we add the set {mA(Sm/m) > e} to the rejection

region, that is, we reject the null hypothesis when either r:5 m or (r < m, mA(Sm/m) > el,

where 0 < a. The significance elvel of this test is

Po{r < m} + Po{r > m, A(Sm/m) > c/m) = Po{(S,,/m) > c/m)

S + Pa{r <_ m, A(, ./m) < c/rm). (5.10)

U!.
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dy (m- 1),j/2d -~ Z2 )-1/21 (M_11/2(l Z2)-3/2 = _ 1 )1/2r, f2)13/2

d z d -z (- - , 1 - z j - [WVL2I ~ 2 - ~ )

and f2 - f2(l - teo)-213/2 = exp[3ao(1 - t)1.Substituting these results into the
integral above and using Stirling's formula on the gamma functions we have

C*(m/21r) 1/2 Je*p3ao(1 - qo)-1 1(1 -t(o)-
1/ 2 t,_ [o(z)]dz. (.6

We need to make another change of variable. Let

log(l + 02) -- log[1 - (Z11 - te.) 2 1 2ao(1 - tfo)1  (5.7)

Observe that tf. 0 implies 0 -(e2s~/m -1)1/2 and te. = 1 -mo/rnM (e 2a/mG 1-/2

_-(1-te.)( 1 + 02)-3/2[log(l + 02) -20
2 ][log(i + 02)1-1. Substituting these results into

(5.4) gives

Po (mo r < m) 2(a/ r)1/2e-] [Iog(1 + 02)1]1/2(58

v- [fo(8)][W2  log(1 + 01)] .(log(1 + 02)1'-'di

where v..[fo($)] = E~ei(Vb.&)} where V, = ~ 1  ... is an i.i.d. sequence

of random variables, each Zi has the same distribution as

Z =(0 2 /2)X 2 
- (1 + 02 )1/2 X + (1/2) [#2 -log(l + 02)], X N(O, 1).

To show that (5.6) agrees with (5.1) we write Y, Z in the following form

Y = (1/2)02(l + 02 ) 1I(Z - 801)2 + (1/2)(1 +i log(1 + p2))

-Z = (02/12)(X - (I + 02)1/2V01)2 - (1/2)[1 + log(1 + j2)]

Let X2 (,y) denote the noncentral X 2 -distribution witli one degree of freedom and noncen-

*tral parameter -t. It is easy to see that Y, and -Z distributed as 1/)$/j0 X(-+

*(1/2)(1 + log(I + 02)) and -(1/2 )02X2(0-2 + 1) + (1/2)[l + log(I + 02)1 respectively, and they

*have the same support (-oo, (1/2)[1 + log(1 + V2)]), hence the likelihood ratio oi Y with

respect to -Z exists. X 2(-) has density of the following form (see e.g. Ferguson (1907))

~3e/(1/2)i(j!)-11ru + 1/2)]-'2- (j+1/2) . C'/2zi-/2 I z)
j=O

S'%

1'4- .
%. "- . .b.-"
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x); (f2 - z)/(l - x)]. Straightforward calculation gives

Z = VH(t0.,u) . (1, V2X, C2 X 2)

= (1/)[f/(1- t ))]2{ - [Ci/(1 - teo)]2 }-1X 2 - {e/IC/2 (I -(5.4) (5.4)
f- [I/(1 - tf)])} X + (1/_){C?(1 - )

[C -f2(l - t( 0)- 2j}' - lo - - o)--C2.

where X is distributed according to the standard normal. In order to obtain the significance

levels from (5.3) we have to uncondition (5.3) with respect to Po{Sm E dmnfo}. Observe that

each term on the right hand side of (5.3) is a function of z =f, 2/2, hence a function of

Y = (m - 1)1/2Z • (1- Z2)- 1/2. This reduces the conditional probability p,) which in general

is a function of two variables to a function of one variable. This is because the likelihood

r atio statistic is invariant under scale change. It is easy to see that y has a t-distribution with

(m - 1) degrees of freedom. Now multiplying (5.3) by the density of y and integrating over

the appropriate range give

e-f j_( - f2)3/2 . 1 - f(1 - tCo)- 2]-3/2
o(<1,o<1--o/,.) 11(5.5)

(1 - o)1 2V_(C0)-(1o)0._ (y)dy

where gm-(y) = r(m/2)[(m- 1)%]- 1/2 .[r{(f- 1)/2)}]- ' . [y 2/(m- 1)+ 1]- -/2 is the density

of the t-distribution with (m - 1) degrees of freedom.

The second factor on the right hand side of the equation above cancels with

emA(f) = eCp(m/)log[C/(2 - , )J} = [C2/(C2 - C2)1/2 [Y/(M - 1) + 11"/2

and (5.5) reduces to

e-'r(m/2)[(m - 1)r[-1/[r{(mn - 1)/2})j]-' _o<2,--o/ - -) 8 /

[f2 - C?(1 - to)-J-i2  (1- &, /v-(Co)dy

e e- r(m/2)[(m - 1)K]-1/ 2 [r((m - 1)/2)}1-[

(C2 -4
2 ) 2  

-(2(1 -, -)25/ 2 (1- te 0,)112V Y dz dsI
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where 2o = (520/mo - 1)1/2, #1 = (e'2 Im - 1)1/2, z+(9) = limj... Ee{e -(Ub)} with Un =

?= Yi, Y1, Y2, • is an i.i.d. sequence of random variables, each having the same distribution

as

Y - -(02/1 + 02)X2/2 + (0/1 + 82 )z + [V2/(1 + 92) + log(1 + 02)1/2, (5.2)

with X distributed according to the standard normal distribution, and ab = inf{n, U,, 2 b}.

The original forward method (see Lalley (1983)) gives the same result. (Private commu-

nication). Woodroofe (1978, 1979) contains a mistake in the general approximation formula,

so his results on repeated T-tests are also incorrect. The derivation of (5.1) using Siegmund's

method is simpler than that of the original forward method because it takes advantage of the

invariance property of the generalized likelihood ratio statistic. The backward method also

makes use of this invariance property in an implicit way. More on this point later.

". By (3.5)

p(m){mo < r < m) (1 - tco)-I/Il(Co)lI 2.
4< (5.3)

IV[el/(1 - to), f2 -1/2 exp[-(ao - A(Co))m] • v.-(fl, CI)

where
Cm-1 = o = (C1 , C), a = aom, to = inf{t: 0 < t < 1 - mo/,

(1 - t)A(C 1 (l - t), f2) = 0}

S(fl, f2) is the covariance matrix of (W2, W). W is normally distributed with first and second

moment given by E(W)= & E(W2 ) = C2. Simple calculation shows that the determinant of

T is IT(fl, 2)1 = 2(f2 - M).

i-,(Ci,,C2) = lim E(-) (ei,-) R,. - (m - T)A (f - ST)/(m - T)] - a

0.: T = n{; (m - n)AE(f - S.)/(m - n)1 > a).

By Theorem 3 of Chapter 4, RA, under P* has the same limiting distribution as the

excess over the boundary by a random walk with increment VH(tfop) • (1, VT2X, f 2X2 )

" where L = (1, 0, f2) is the mean vector of (1, v/ox, f2z), H(z, y, z) ( 1- z)A[(Cj - y)/(l -

- o

. . . . . . . . . . . .
.. . . . . . . . . . . . . . . . . . . . . . .
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Assume X 1, X 2 , are independent and normally distributed with unknown mean i

and variance a 2 , and that we are interested in testing Ho : = 0 against H :,i # 0. Let

So') denote the log likelihood of X 1 . Some simple algebra shows that the (generalized) log

likelihood ratio statistic is

nA(S./n) = n(O(S./n) - Oo(S 2)/n) = (n/2) log s(2)ln -(S(l)/n)2

where S. = (S.1), S12)) = (E,"= , X?)

O(Z,, 22) = SUp to,. (Z. Z2) = [(Z2 - 1Z) - Zog(,2 - )]

0o(z2) = sup to,,(z2) = [(2 - 1) - log 21/2.

The repeated T-test is defined in terms of the following stopping rule r - inf(n; n >

mo, nA(S,/n) > a}. The test rejects the null hypothesis if and only if r _< m. We first

consider the problem of approximating the significance level of the repeated t-test. Observe

that the probability Po,,(mo _< r < m) is independent of a. So we may write Po{mo _< r < m}

for significance levels.

U A variant of the forward method (see Siegmund (1985) for details) which involves taking

the likelihood ratio of the maximum invariant process (Y2,. , Y.) = (z 22, Z1 2,..,

2 Z.) then mixing it by Lebesgue measure over the invariant paramter space gives us

Po{mo :_ r < m} - 2(a/r)1/2e- J [log(1 + #2 )1-1 /2 v+(O)dO (5.1)

- , .. '.
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Table 5.6

Powers of Group Repeated t-Test

- of observations analytic Monte Carlo

in a group a mo m q approximation (2000 replications)

.. 2 3.65 8 40 0.7 0.962 0.961 ± 0.004

0.6 0.880 0.888 ± 0.007

0.5 0.726 0.741 ± 0.010

3 3.6 10 55 0.6 0.969 0.966 ± 0.004

0.4 0.681 0.685 ± 0.010

4 3.6 10 70 0.5 0.949 0.940 ± 0.005

0.3 0.527 0.518 ±10.011

5 3.6 10 80 0.5 0.973 0.961 ± 0.004

0.4 0.855 0.843 ± 0.008

0.3 0.590 0.574 ± 0.011

7 3.6 15 120 0.4 0.970 0.966 ± 0.004

0.3 0.790 0.773 ± 0.009

0.2 0.420 0.414 ± 0.011
.I

-
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Appendix

Here we give some details about the numerical computation performed in Chapter 5.

To approximate Pq{mo : r < m,A(S/m) < f/m} for q 96 0 we use (5.20). For

Po{mo{_5 r < m,A(Sm/m) < c/m} with c < a we invoke (5.10). To approximate the

significance levels of repeated the significance levels of the repeated significance test Po{mo :

r < m} we use

Po{mo _ r in) = Po{mo _ r < m,A(S./m) <_ /m + Po{A(S./m) > a}. (A.1)

Replacing e by a in formula (5.10) gives the approximation of the first term on the right hand

side of (A.1). The second term is easily computed by calculating the tail probability of the

t-distribution.

To complete the approximations above, we need to compute v+(O) (the excess over the

boundary by the forward process) numerically. The following proposition is usefld.

Propositon 1: Let Y,Y 2 ,"". be independent and identically distributed nonarithmetic

random variables with a finite positive mean ;L > 0. For b >_ 0 define S. E'= Y and

r& = inf{n, S, > b}. Then

lim E/exp[-a(S - b)]} = exp{-'[ [j 2 (a2 + t2)-I- 1 [16(t) - w/2Jdt00 f' a~2 +t2)- JO(A.2)
- j (,,,2 + t2 )-(R6(t) + log pt)dtl}

where R6 and 16 are the real and imaginary part of 6(t) = log[1/(1-f(t))] with f(t) -Ee"
',

the characteristic function of Y1.

Proof: See Woodroofe (1979).

Now it is sufficient to identify f(t) for Yi given by

Yl ~= -(9=11 + 02)X2l2 + (Ili + 92)X + [92/1 + g2 + log(1 + 0)/

with X N(0, 1).

I 
i

.. - - - - - - - - - - - - - .

-. . . . . . . . . . . . . . .



54

Some straightforward algebra shows that

f(t) = (I + 02)1/2(1 + 02 + it02 )- 1/ 2 exp{(it/2)log(1 + 92) + $2/(I + 92)1

•exp((-1/2)8 2t2 . (1 + 62)-(I + j2 + it9 2)- 1}

= exp{(1/2) log{(I + 02)1(1 + 92)2 + t2 84]-1/2 ) - (t2 12/2)1(1 + 02)2 + 0#1-11

*exp{(i/2)[t9 2(1 + 9-l- tan1 l[t0 2 (1 + 02)-,] + t3 64 [(1 + 02)2 + t 2 41-1

(I + #2)- + tlog(1 + #2)1}
so

I - f(t)12 = 1 + exp{log((l + 02)[(1 + 82)2 + t2 4 -1/21 - t2s2[(1 + 02)2 + t2841- 1}

- 2exp{(1/2) log{(1 + .2)[(1-+-92)2 + t2941- /2 ) - (t 2 2 /2)1[(1 + 92)2 + t il
-

I

cos{(1/2)[t92( + #)-_ tan-1 [t02 ( + j2)-11 + t3$4 [(1 + 02)2 + t 284]-

" (1 + 02)-1 + t log(I + p2)]).

It is easy to see that

R6(t) = - log I1 - f(t)l (A.3)

and

6(t) s ,in-{If(t)IlII - f(t)l sin(112)[- t 2 (1 + 02-)1

S- tan 1-t02(I + 02)-1 + t3o4[(1 + 02)2 + t204]- 1 + tlog(1 + 02)1)). (A4)

Now substitute (A.3) and (A.4) into (A.2) and perform the numerical integration to obtain

V+a (9).. 4+

4.
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